جستجو در سایت :   

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته فیزیک 

گرایش : حالت جامد

عنوان : ساخت و مشخصه یابی سلول های خورشیدی حساس شده با نقاط کوانتومی کادمیم سولفید

دانشکده خواجه نصیرالدین طوسی 

دانشکده فیزیک

پایان‌نامه دوره کارشناسی ارشد فیزیک-حالت جامد

 ساخت و مشخصه یابی سلول های خورشیدی حساس شده با نقاط کوانتومی کادمیم سولفید با بهره گیری از کاتد گرافن

استاد راهنما:

دکتر محمود صمدپور

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی گردد

(در فایل دانلودی نام نویسنده موجود می باشد)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن می باشد هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود اما در فایل دانلودی همه چیز مرتب و کامل می باشد)

چکیده

در این پژوهش به ساخت ومشخصهیابی سلولهای خورشیدی حساس شده با نقاط کوانتومی کادمیوم سولفید و کادمیوم سلنید با بهره گیری از کاتدهای مختلف مانند مس سولفید و سرب سولفید و کاتدهای نانوکامپوزیتی با پوششهای پیدرپی از این دو ماده پرداخته میشود. در این پایان نامه به دنبال بهینه کردن مشخصات فوتوولتایی این سلولها بوده  با در نظر داشتن پایین بودن فاکتور کارکرد در این سلولها و مطالعه عوامل بازترکیب با در نظر داشتن واکاوی امپدانس الکتروشیمیایی این سلولها ، با معرفی کاتدهای مؤثر به دنبال افزایش این مشخصه میباشیم. با بهرهگیری از ساختارهای پیدرپی و ترکیبی مس سولفید و سرب سولفید که به روش سیلار لایه نشانی شدند بازدهی این سلولها تا بیش از 3 برابر نسبت به سلولهایی که کاتد آنها مس سولفید یا سرب سولفید می باشد افزایش یافته می باشد یعنی 63/3 % پیش روی 4/0 % و 48/1 %. همچنین فاکتور کارکرد در کاتدهای نانوکامپوزیتی مس سولفید/سرب سولفید/…/مس سولفید/سرب سولفید 2 برابر شده می باشد یعنی 49/0 پیش روی 26/0. به علاوه با مطالعه خواص فوتوولتائیک سلولهای خورشیدی به تحلیل کارکرد کاتد گرافن در این سلولها میپردازیم. در این پژوهش از صفحات گرافنی به دلیل دارا بودن ساختار دو بعدی و سطح مؤثر بالا و همچنین رسانایی الکتریکی مناسب و ترکیب آن با مس سولفید/سرب سولفید به مقصود افزایش خواص فوتوولتائیک و بازدهی سلولها بهره گیری شده می باشد. در این جا گرافن به دلیل سطح مؤثر زیادی که فراهم می ‌کند در کاتدهای ترکیبی به عنوان بستری مناسب برای لایهنشانی مس سولفید و سرب سولفید بر روی آن به کار گرفته شده می باشد و بازدهی را از 54/2 % تا 21/3 % افزایش داده می باشد.  

کلید واژه: سلول خورشیدی، نقاط کوانتومی، نانو کامپوزیت ، سیلار ، گرافن

فهرست مطالب

عنوان                          صفحه

فهرست جدول‌ها ‌د

فهرست شکل‌‌ها ‌ه

پیشگفتار.. 1

فصل 1- مقدمه و سلولهای خورشیدی حساس شده با رنگدانه. 3

1-1-     مقدمه.. ………………………..3

1-2-     سلول های خورشیدی رنگدانه ای و ساختار کلی آن ها 5

1-2-1-فتوآند……. 6

1-2-2-الکترولیت اکسایشی – کاهشی.. 7

1-2-3-الکترود کاتد. 8

1-2-4-مکانیسم انتقال بار در سلولهای حساس شده با رنگدانه. 8

1-2-5- فرآیند های تزریق، انتقال و بازترکیب در سلولهای رنگدانهای.. 9

1-3-     نتیجهگیری.. 10

فصل 2-   سلولهای خورشیدی حساس شده با نقاط کوانتومی و مروری بر پیشینه تحقیقات……….. 12

2-1-     مقدمه.. 12

2-2-      مفهوم نقاط کوانتومی.. 12

2-3-      عوامل کاهش بازده در سلولهی خورشیدی تک پیوند. 13

2-4-      رویکردهای متفاوت با بهره گرفتن از ویژگیهای نقاط کوانتومی در طراحیQDSSCs 13

2-4-1-تنظیم گاف انرژی در نقاط کوانتومی.. 14

2-4-2-اثر حاملهای داغ. 15

2-4-3-تولید چندین جفت الکترون-حفره (اکسایتون) 17

2-4-4-سلولهای خورشیدی با نوار میانی.. 18

2-5-     سلولهای خورشیدی بر پایهی نقاط کوانتومی (QDSSCs) 19

2-5-1-ساختار و اصول عملکرد سلول های خورشیدی بر پایهی نقاط کوانتومی.. 20

2-5-2-اجزای مختلف سلول خورشیدی بر پایه نقاط کوانتومی.. 21

2-5-2-1-الکترود آند…………………………. 21

2-5-2-2-نقاط کوانتومی به عنوان حساس کننده و جاذب نور 22

2-5-2-3-الکترولیت اکسایشی کاهشی پلی سولفید. 24

2-5-2-4-الکترود مقابل…………………….. 25

2-5-3-برهمکنشهای انتقال و عبور الکترون-حفره در سلول های خورشیدی بر پایه نقاط کوانتومی.. 26

2-6-      مقایسهی سلولهای خورشیدی حساس شده با رنگدانه و نقاط کوانتومی.. 28

2-6-1-تفاوتهای ساختاری  و زمان انتقال بار در DSSCs و SSSCs. 29

2-7-      مروری بر نقاط کوانتومی به کار برده شده در QDSSCs به عنوان حساس کننده 34

2-8-     مروری بر کاتدهای به کار برده شده در QDSSCs 37

2-9-     نتیجهگیری.. 38

فصل 3-  ساخت و  روش های مشخصه یابی سلول های حساس شده با نقاط کوانتومی.. 41

 :دانلود فایل متن کامل پایان نامه در سایت sabzfile.com

3-1-     مقدمه.. 41

3-2-     مواد و تجهیزات مورد نیاز 41

3-2-1-مواد اولیه  41

3-2-2-تجهیزات مورد بهره گیری در فرایند ساخت… 42

3-3-     ساختارکلی سلول های حساس شده با نقاط کوانتومی.. 43

3-3-1-آماده سازی فوتوآند. 44

3-3-1-1- شستشوی زیرلایه…….. 44

3-3-1-2-لایه نشانی خمیر نانوذرهای TiO2  به روش دکتر بلید. 45

3-3-1-3-پخت حرارتی در کوره……….. 47

3-3-1-4-حساسسازی فوتوآند با نقاط کوانتومی کادمیوم سولفید به روش سیلار (SILAR) 47

3-3-1-5-ساخت نقاط کوانتومی CdSe  و حساسسازی آند به روش حمام شیمیایی(CBD) 49

3-3-2-آمادهسازی الکترود کاتد. 52

3-3-2-1-ساخت کاتد نوع اول از جنسCuS. 53

3-3-2-2-ساخت کاتد نوع دوم از جنس PbS. 53

3-3-2-3-ساخت کاتد نوع سوم از جنس مس سولفید/ سرب سولفید و سرب سولفید/مس سولفید. 54

3-3-2-4-ساخت کاتد با لایه نشانی پی در پی CuS/PbS…  به روش سیلار 54

3-3-3-ساخت الکترولیت پلی سولفید برای سلول های خورشیدی حساس شده با نقاط کوانتومی.. 55

3-3-4- بستن سلول های QDSSCs. 55

3-4-     روش های مشخصه یابی فوتوولتایی سلول های خورشیدی نقطه کوانتومی.. 57

3-4-1-اندازه گیری منحنی های ولتاژ – جریان.. 57

3-4-1-1-اندازه گیری منحنی های ولتاژ-جریان در روشنایی.. 57

3-4-1-2-اندازه گیری بازدهی تبدیل انرژی خورشیدی به الکتریکی و فاکتور کارکرد سلول.. 57

3-4-1-3-اندازه گیری منحنی های ولتاژ-جریان در تاریکی.. 58

3-4-2-اندازه گیری افت ولتاژ سلول با زمان.. 58

3-4-3-طیف سنجی امپدانس الکتروشیمیایی (EIS) 60

فصل 4-  تحلیل و نتایج مشخصه یابی سلول های ساخته شده. 64

4-1-مقدمه. 64

4-2- واکاوی میکروسکوپ الکترونی روبشی (SEM) نانو ذرات تیتانیوم اکسید. 64

4-3-طیف جذب و عبور آند ها 67

4-4- مشخصه یابی کاتد ها به روش SEM… 68

4-5- مشخصات فوتوولتایی سلول های ساخته شده بر پایه کاتدهای مختلف… 71

4-6- مطالعه اثر افزایش تعداد سیکل های سیلار در ساخت کاتد های نانو کامپوزیتی.. 76

4-7-واکاوی امپدانس الکتروشیمیایی.. 79

4-7- مطالعه گرافن به عنوان کاتد در QDSSCs 81

4-7-1-ساخت کاتد با پوشش گرافن و کامپوزیت آن با سرب سولفید. 81

4-7-2-مطالعه مشخصه های فوتوولتایی سلول ها با کاتد گرافن / سرب سولفید. 82

4-7-3-ساختار ترکیبی گرافن با دیگر ساختار های نانو کامپوزیتی به عنوان کاتد. 83

4-8-مقایسه ی کاتد های نانوکامپوزیتی با کاتد های ترکیبی باگرافن.. 87

فصل 5-  نتیجهگیری و پیشنهادات… 93

5-1-     جمع بندی و نتیجهگیری.. 93

5-2-      پیشنهادات… 94

مقالات ارائه شده. 95

فهرست مراجع.. 96

پیشگفتار
در این پژوهش به ساخت و مشخصه یابی سلول های خورشیدی حساس شده با نقاط کوانتومی پرداخته شده می باشد. برای ساخت آند در این سلول ها معمولاً از نانوذرات تیتانیوم اکسید(TiO2) بهره گیری می گردد که بر روی زیر لایههای شفاف و رسانای اکسید قلع آلاییده شده با فلوئور پوشش داده میشوند. در این جا جهت حساسسازی فوتوآندها از نقاط کوانتومی کادمیوم سولفید و کادمیوم سلنید بهره گیری میشود. تا به حال کاتدهای مختلفی برای این سلول ها به کار رفته می باشد. در این پژوهش به مطالعه کاتدهای مس سولفید و سرب سولفید و مقایسهی آنها پرداخته شده می باشد و بعد از آن روشی جدید تحت عنوان روش لایه نشانی دورهای برای ساخت نانو کامپوزیت مس سولفید/سرب سولفید به عنوان کاتدی مؤثر در سلولهای خورشیدی حساس شده با نقاط کوانتومی با بازدهی بالا معرفی شده می باشد. در این روش کاتدها به روش پوشش پی در پی لایه های مس سولفید و سرب سولفید بر روی شیشههای FTO با روش جذب و واکنش پی در پی یونی (سیلار ) ساخته شدند. با بهره گیری از کاتد نانو کامپوزیتی مس سولفید/سرب سولفید بازدهی نسبتاً خوبی برای این سلولها به دست آمد که این بازدهی قابل قیاس با کاتد موثر و بهینه شده مس سولفید در سلولهای خورشیدی حساس شده با نقاط کوانتومی میباشد.خواص فوتوولتایی این سلولها مورد مطالعه قرار گرفته می باشد. نتایج بررسیها نشان داد که بازدهی این سلولها در مقایسه با کاتدهای مس سولفید و سرب سولفید به ترتیب بیش از2 و 3 برابر افزایش یافته می باشد. پس از معرفی این روش به عنوان روشی جدید در ساخت کاتدهای نانو کامپوزیتی به بهینه کردن این کاتدها و بهینه کردن تعداد سیکلهای سیلار مس سولفید/سرب سولفید پرداخته شده می باشد. در ادامه به مقصود افزایش بازدهی و بهینه کردن عملکرد این سلول ها صفحات گرافن نیز به عنوان کاتد مورد بهره گیری قرار گرفت ،صفحات گرافنی به علت دارا بودن ساختار دو بعدی دارای سطح موثر بالا هستند. گرافن همچنین دارای رسانایی الکتریکی قابل مقایسه با فلزات میباشد. با در نظر داشتن سطح موثر مناسب و رسانایی قابل توجه، انتظار میرود کاتدهای متشکل از صفحات گرافنی، خواص کاتالیستی مناسبی در حضور الکترولیت مورد بهره گیری در سلول های خورشیدی حساس شده با نقاط کوانتومی نشان دهند. پس با در نظر داشتن مزایای ذکر گردیده برای گرافن؛ در این پژوهش به مطالعه خواص فوتوولتائیک این سلول ها و تحلیل کارکرد گرافن به عنوان کاتد در این سلولها پرداخته شده می باشد. همچنین نتایج مناسبی که از کاتدهای نانوکامپوزیتی مس سولفید/سرب سولفید در این پژوهش گرفته شده می باشد، منجر به تلفیق این دو کاتد و ارائهی کاتدی ترکیبی از آنها شده می باشد؛ که در اینجا به گونه کامل به مطالعه و مشخصه یابی خواص فوتوولتایی آنها پرداخته شده می باشد.

مقدمه و سلولهای خورشیدی حساس شده با رنگدانه
مقدمه
کنترل گرمایش جهانی و جلوگیری از افزایش بیش از حد دمای کرهی زمین یکی از موضوعات چالش برانگیز قرن بیست و یکم میباشد. محدود کردن افزایش دمای کره زمین در حد 2 درجه سانتی گراد به نحوهی بهره گیری از سوختهای فسیلی بستگی دارد، زیرا گازهای ناشی از سوختهای فسیلی به خصوص گاز دی اکسید کربن (CO2) مانع از تبادل حرارتی جو زمین با خارج شده و گرما داخل جو محبوس میشود به همین دلیل این شرایط به فرآیند تولید گازهای گلخانهای شهرت یافته که افزایش آب و هوای زمین را در پی داشته می باشد. بالا رفتن دمای کره زمین باعث بروز تغییر در آب و هوا میشود. بخش اعظم انتشار این گازها ناشی از استفادهی بیرویهی منابع انرژی فسیلی مانند زغال سنگ، نفت و گاز توسط کشورهای توسعه یافته و صنعتی میباشد. این منابع اولیهی انرژی نه تنها باعث تغییرات آب وهوا بلکه سلامت بشر و اکوسیستم را نیز در معرض خطر قرار میدهد. از سوی دیگر منابع انرژی جهان محدود هستند و به گونه یکنواختی توزیع نشدهاند. همهی اینها باعث میشود بشر به سمت منابع تجدید پذیر انرژی مانند آب، باد، بیومس و انرژی خورشیدی سوق یابد.
در حالی که منابع انرژی در آینده میبایست ترکیبی از این منابع باشد، انرژی خورشیدی به تنهایی 10000 برابر مصرف روزانهی سیارهی ما را تأمین می کند. خورشید معادل 1024×3 ژول انرژی در سال به سیارهی ما میدهد، پس با پوشش دادن تنها % 1/0 از سطح زمین با سلولهای خورشیدی با بازدهی % 10 نیاز فعلی بشر به انرژی تأمین می گردد، اما استفادهی گسترده از این نوع انرژی نیازمند تکنولوژی برتر و تخمین صرفه اقتصادی میباشد.
البته انرژی خورشیدی با محدودیتهایی نیز رو به رو می باشد مانند غیر پیوسته بودن و پراکندگی این منبع؛ زیرا حرکت زمین موجب عدم تداوم نور خورشید در 24 ساعت شبانه روز میباشد، همچنین نقاط جغرافیایی مختلف به یک اندازه از این انرژی بهره نمیبرند مثلاً در کشورهایی مانند فنلاند و سوئد که آفتابگیر نیستند، این انرژی غیر کاربردی میشود. به علاوه ذخیرهسازی و انتقال انرژی خورشیدی در مقیاس بزرگ مستلزم سرمایهگذاری وسیعتر میباشد.
بهرهبرداری از این انرژی نیازمند رسیدن به تکنولوژی و صنعت فوتوولتائیک که تولیدکنندهی انواع سلولهای فوتوولتائیک می باشد، میباشد. این سلولها تبدیلکنندهی مستقیم انرژی خورشیدی به انرژی الکتریکی هستند. این سلولها به دلیل عدم نیاز به اجزای متحرک؛ هزینهی نگهداری پایینی دارند و به همین دلیل جهت کاربردهای بلند مدت مورد توجه قرار گرفتهاند.
امروزه صنعت از سلولهای نیمه هادی فوتولتائیک در محصولات مصرفی مانند: ساعتهای خورشیدی، ماشین حسابها، اسباببازیها و غیره یا مونتاژ شدهی این سلولها در ماژولهای خورشیدی بهره گیری می ‌کند. سلولهای خورشیدی فوتوولتائیک بسته به نوع تکنولوژی به کار برده شده در ساختشان به سه نسل تقسیم میشوند:
نسل اول: رایجترین سلولهایی هستند که در مصارف صنعتی و خانگی مورد بهره گیری قرار میگیرند و از ویفرهای سیلیکونی تک کریستالی و چند کریستالی ساخته میشوند که حدود % 85 از سهم بازار را به خود اختصاص دادهاند. خلوص بالای کریستال های سیلیکون مورد نیاز و همچنین دمای بالا هنگام ساخت و مقادیر زیاد ماده مورد نیاز جهت ساخت این سلولها پارامترهای تعیین کننده در تخمین هزینهی این سلولها هستند. بازده این سلولها به شدت به زاویهی تابش نور فرودی وابسته می باشد پس در تولیدات تجاری علاوه بر بازده، هزینه نصب و نگهداری پنلها هم مهم می باشد و همهی عوامل بایستی با هم بهینه شوند. هم اکنون شرکتهای تجاری در راستای کاهش هزینه تمام شده به کمتر از 1 دلار به ازای هر وات و تولید پنلهای سبکتر و انعطافپذیرتر حرکت می کنند.
نسل دوم: به علت هزینهی ساخت بالا، ویفرهای سیلیکونی به سرعت با سلولهای نسل دوم جایگزین شدند. این سلولها بر اساس تکنولوژی فیلمهای لایه نازک میباشند که بر پایهی سیلیکون آمورف، کادمیوم تلوراید (CdTe) ،مس ایندیم سلنید(CIS) و مس ایندیم گالیم سلنید(CIGS) ساخته میشوند که معمولاً بین یک زیر لایهی شفاف رسانا و الکترود کاتد پوشش داده میشوند. این سلولها % 15 بازار تجاری را شامل میشود.
حد ترمودینامیکی بازدهی تبدیل نور به الکتریسیته برای سلولهای فوتوولتائیک با تک پیوند p-n (نسل اول و دوم) تحت تابش استاندارد AM1.5 G برابر % 9/32 میباشد. که این حد ، حد شاکلی کوئیزر نامیده میشود که از این واقعیت سرچشمه میگیرد که فوتونهایی با انرژی کمتر از شکاف انرژی جذب نمیشوند و فوتونهایی با انرژی بالاتر از شکاف انرژی، انرژی اضافه (Ephoton-Egap) را به صورت گرما ساطع میکنند.
نسل سوم : سلولهای خورشیدی نسل سوم با هدف افزایش بازدهی بالاتر از حد شکلی-کوئیزر به موازات پیشرفتهای لایه نازک مورد توجه قرار گرفتند. به این مقصود از مفاهیم و رویکردهای علمی مانند: سلولهای چند پیوندی، مبدلهای اپتیکی، تولید چندین حامل بار توسط اثر یونیزاسیون و وارد کردن ناخالصی در ساختار بهره گیری کردند. بازدهی بالاتر از % 40 برای سلولهای چند پیوندی با بهره گیری از متمرکز کردن نور خورشید گزارش شده می باشد.
سلول های خورشیدی رنگدانهای (DSSCs) و سلولهای خورشیدی حساس شده با نقاط کوانتومی (QDSSCs) و همچنین سلولهای پلیمری جزء سلولهای نسل سوم هستند که در ادامه به تفسیر آنها می پردازیم.
سلول های خورشیدی رنگدانه ای و ساختار کلی آن ها
این سلولها اولین بار در سال1991 توسط گراتزل و همکارانش ساخته گردید که از نوع سلولهای فتو الکتروشیمیایی هستند و شامل فتوآند، الکترولیت اکسایشی–کاهشی و الکترود کاتد میباشد. شکل ‏1 1 طرحوارهای از اجزای یک DSSC، سطوح انرژی، اجزای مختلف آن و فرآیندهایی که در این سلول اتفاق می افتد را نشان میدهد.

شکل ‏1 1 . طرح وارهای از (a): یک سلول خورشیدی رنگدانهای، (b): دیاگرام انرژی در یک DSSC [ – ]
در این سیستم، لایهای متخلخل از ذرات نانومتری هست که معمولاً از نانوساختار دی اکسید تیتانیوم (TiO2) بهره گیری میشود اما اکسیدهای دیگر با گاف انرژی مشابه مانند ZnO ، SnO2 ،Nb2O5 نیز مورد مطالعه قرار گرفتهاند.[ – – – – ]
در این سلولها تک لایهای از رنگ روی سطح لایهی نانوکریستالی جذب می گردد. بر اثر تابش، مولکول رنگدانه برانگیخته شده و این برانگیختگی به تزریق یک الکترون به باند هدایت TiO2 و ایجاد حفرهای در رنگدانه میانجامد که به آن فرایند تزریق میگویند سپس رنگدانه با گرفتن الکترون از الکترولیت احیا شده و به حالت پایه باز میگردد (فرآیند احیای رنگدانه ) .الکترولیت که شامل یک جفت اکسایش-کاهش یدید/تری یدید حل شده در یک حلال آلی میباشد با ورود الکترون از الکترود مقابل احیا شده و مدار الکتریکی با انتقال الکترون در مدار خارجی کامل می گردد.
احیای رنگ( حساس کننده) توسط الکترولیت، مانع گیر افتادن دوبارهی الکترون تزریقی به TiO2 توسط رنگ اکسید شده میشود. ولتاژ تولید شده در این سلول متناسب با اختلاف سطح فرمی الکترون نیمه هادی و پتانسیل اکسایش-کاهش الکترولیت می باشد. شکل ‏1 1سطوح انرژی اجزای مختلف یک سلول خورشیدی رنگدانهای را نشان میدهد. در ادامه اجزای این سلولها به تفضیل تبیین داده میشود:
1-2-1-فتوآند
جهت ساخت فتوآند در این سلولها از نیمهرساناها بهره گیری میشود. نیمهرساناها معمولاً در معرض الکترولیت و تابش نور پایداری خوبی دارند اما بیش تر نیمه رساناها به علت گاف انرژی نسبتاً زیادی که دارند، نمیتوانند نور مرئی را به اندازه کافی جذب کنند پس نیمه رساناهایی مانند نانو ساختارهای تیتانیوم اکسید (TiO2) و اکسید روی (ZnO) با پوششی از رنگدانههای آلی که میتوانند بخشی از نور مرئی خورشید را جذب کنند در این سلولها به کار میرود. رنگدانهها در واقع نوعی مولکولهای آلی حساس به نور هستند. ویژگی خاص مولکولهای این نوع رنگدانه وجود ترازهای HOMO و LUMO در آنهاست که امکان آزاد شدن الکترون و انتقال آن به TiO2 را ممکن می سازد .
مؤثرترین و متداولترین رنگدانههایی که در این نوع سلولها به کار می طریقه و توسط گروه گراتزل ساخته شده اند، کمپلکسهای روتنیوم و اسمیوم میباشند که از طریق گروه کربوکسیلی فسفاتی و هیدروکسیلی به سطح TiO2 متصل می شوند. در بین رنگدانه های مختلف ، مهم ترین نوع تجاری آن ها N719 ، Z907 ، N3 هستند.
نیمه رساناهای TiO2 و ZnO بر روی زیر لایههای شفاف و رسانا مانند قلع اکسید آلاییده شده با فلوئور (FTO) یا ایندیوم پوشش داده میشوند. این زیر لایه ها پوشش نازکی از اکسید رسانای شفاف (TCO) لایه نشانی شده روی شیشه می باشد ویژگی های دیگر این زیر لایه مقاومت سطحی پایین و عدم تغییر حالت در دماهای حدود 500 درجه سانتی گراد میباشد. برای افزایش اندازه نور جمع آوری شده (LHE) پژوهشگران از الکترودهای TiO2 مزوپروس بهره گیری میکنند که علاوه بر افزایش جذب رنگدانه، موجب نفوذ آسانتر الکترولیت به داخل ساختار مزوپروس می گردد.
معمولاً این لایهی مزوپروس TiO2با فاز بلوری آناتاز بوده که از ساختار های متداولی زیرا نانو لوله ، نانو میله، نانو ذره ، نانوفیبر دی اکسید تیتانیوم برای این لایه در ابعاد 400-20 نانومتر بهره گیری می گردد. این لایه نیمه هادی دارای تخلخلی از مرتبه 60-70 در صد می باشد. فاکتور زبری (نسبت سطح واقعی به ظاهری) برای لایه ای به ضخامت mµ10 حدود 1000 می باشد و به این معناست که cm2 1 از لایه TiO2 با ضخامتm µ10 دارای سطح واقعی cm2 1000 می باشد که منجر به جذب سطحی مقدار زیادی رنگدانه شده ( مقدار رنگدانه جذب شده از مرتبµmol/cm2 1/0) که افزایش اندازه جمع کردن باریکه ی نور تابشی در فتو الکترود حساس شده به رنگدانه (LHE) را در پی دارد همچنین با افزایش پراکندگی نور در لایه TiO2 ، طول مسیر نور تابشی و در نتیجه اندازه جذب نور توسط رنگدانهها افزایش مییابد. این خاصیت درلایه TiO2 را می توان با اضافه کردن ذرات بزرگتر TiO2 به ذرات کوچکتر که در حد 20 نانومتر هستند در هنگام ساخت و تهیه لایه ایجاد نمود. اما ذرات بزرگ تر سطح مؤثر کمتری دارند و در نتیجه تعداد رنگدانههایی که میتوانند جذب آنها شوند کاهش مییابد. شبیه سازی الکترود TiO2 در این سلول های پیش بینی می کند ترکیب مناسب ذرات کوچک 20 نانومتری و بزرگ 250-300 نانومتری از TiO2 که مراکز اصلی پراکندگی در لایه را ایجاد می کنند باعث بهبود چشمگیری در عملکرد سلول می گردد در واقع از یک لایه پراکننده که ابعاد ذرات آن حدود 400 نانومتر می باشد بهره گیری می گردد در این لایهی پراکننده انعکاس چند باره نور در ناحیه کم انرژی (nm 900-650 ) آن باعث افزایش جذب نور می گردد و در نتیجه پاسخ به نور تابشی را بهبود می بخشد که اثر آن را می توان در طیف جذب نظاره نمود.
1-2-2-الکترولیت اکسایشی – کاهشی
الکترولیت محلولی شامل یون های آزاد می باشد ومانند محیط رسانا اقدام می کند . الکترولیت مورد بهره گیری در این نوع سلول ها شامل یون های اکسایشی – کاهشی I-/I3- می باشد واین ها دایماً درون ساختار الکترولیت با آزاد کردن و گرفتن الکترون مطابق با معادلهی ( ‏1 1 ) به هم تبدیل می شوند تا الکترون ها به کمک آن ها بتوانند بین فتوآند و کاتد جابه‌جا شوند.
( ‏1 1 )
3I- I3- + 2e-
همچنین ترکیبی از یداید مانند یدید لیتیم ،یدید سدیم ، یدید پتاسیم با غلظت 1/0 تا 5/0 مولار از I2 که در محلول غیر-پروتونی مانند استونیتریل حل شده می باشد، بکار رفته می باشد. مقدار کاتیون های یداید مانند Li+، Na+ و K+ هدایت الکترولیت را تحت تأثیر قرار می دهند و اندازه جذب یون های مختلف روی سطح TiO2 تغییر می کند و منجربه جابه جایی تراز رسانش TiO2 می گردد. این عوامل در کارکرد سلول خورشیدی تأثیرگذار می باشد . ویسکوزیته محلول اثر مستقیمی در رسانش یونی الکترولیت دارد، هر چقدر گرانروی پایین تر باشد بهتر می باشد و در کارکرد سلول تأثیر به سزایی دارد. از میان حلالها نیتریلها هستند که گرانروی پایینی داشته و هدایت یونی بالایی را فراهم می کنند.
1-2-3-الکترود کاتد
این الکترود بایستی دارای خاصیت الکتروکاتالیستی بالایی باشد و بتواند یون های اکسید شده I3- را به I- و بالعکس تبدیل کند. در نتیجه زیرا این الکترودها تأثیر کاهشی یون های اکسید شده را دارد بایستی کاهش با نرخ مناسبی بر سطح این الکترود صورت بگیرد بدین ترتیب بهترین الکترود ،پوششی از پلاتین بر روی FTO می باشد با ضخامتی در حدود 200 نانومتر میباشد.
1-2-4-مکانیسم انتقال بار در سلولهای حساس شده با رنگدانه
آغاز فوتون توسط مولکول رنگدانه جذب و یک الکترون را از حالت پایه رنگ S0 به حالت برانگیخته یعنی S* میبرد. (جذب نور)
) ‏1 2 )
S+hυ S^*
الکترون برانگیخته شده به باند هدایت TiO2 تزریق میشود و مولکول رنگ به حالت اکسید شده در میآید(S+). (تزریق الکترون)
( ‏1 3 )
S^* S^++e^- (TiO_2)
الکترون برانگیخته به داخل ساختار نانوکریستال TiO2 نفوذ می ‌کند و از طریق لایه اکسید نیمههادی به زیر لایهی رسانا منتقل میشود و سرانجام از طریق مدار خارجی به الکترود مقابل انتقال مییابد.
الکترود مقابل الکترون را به الکترولیت انتقال میدهد و تری یدید موجود در الکترولیت تبدیل به یدید شده و با کاهش رنگ اکسایش یافته توسط الکترولیت رنگ بار دیگر احیا شده و سیکل به پایان میرسد.

تعداد صفحه :122

این مطلب رو هم توصیه می کنم بخونین:   دانلود پایان نامه ارشد :رهیافت کوانتومی به اثر فارادی و دوفامی دایروی نانو ساختارها

قیمت : 14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می گردد.

پشتیبانی سایت :        ****       serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  **** ***

دسته‌ها: فیزیک